
Edgar Gabriel

Automatically Selecting the

Number of Aggregators

for Collective I/O Operations

Mohamad Chaarawi and Edgar Gabriel

Parallel Software Technologies Laboratory

Department of Computer Science, University of Houston

<mschaara,gabriel>@cs.uh.edu

Edgar Gabriel

Outline

• Motivation

• Automatically determining the number of aggregators

• Experimental Results

• Conclusions and future work

Edgar Gabriel

Motivation

• I/O one of the most severe challenges for high-end

computing

• MPI 2 introduced the notion of parallel I/O

– Relaxed consistency semantics

– Collective I/O

– Nonblocking I/O

– File view

Edgar Gabriel

Collective I/O operations

• Allows to rearrange data across multiple processes

• Popular algorithm: two-phase I/O

• Algorithm for a collective write operation

• Step 1:

– gather data from multiple processes on

aggregators

– Sort data based on the offset in the file

• Step 2: aggregators write data

Edgar Gabriel

Collective I/O operations (II)

• Only a subset of processes actually touch a file

(aggregators)

• Large read/write operations split into multiple cycles

internally

– Limits the size of temporary buffers

– Overlaps communication and I/O operations

• Dynamic segmentation algorithm:

– Variant of two-phase I/O algorithms

– Subdivides processes internally into groups

– One aggregator per group

Edgar Gabriel

Two-phase I/O vs. dynamic

segmentation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

File layout

Process 0 Process 1 Process 2 Process 3

Two-phase I/O with 2 aggregators
Process 0 Process 2

Dynamic segmentation algorithm with 2 aggregators
Process 0 Process 2
1 2 3 4

9 10 11 12

5 6 7 8

13 14 15 16

Edgar Gabriel

Performance Considerations

• Performance of Tile I/O benchmark using two-phase I/O

using 144 processes on a Lustre file system depending

on the number of aggregators

Edgar Gabriel

Performance considerations (II)

• Contradicting goals:

– Generate large consecutive chunks -> fewer aggregators

– Increase throughput -> more aggregators

• Setting number of aggregators

– Fixed number: 1, number of processes, number of nodes,

number of I/O servers

– Tune for a particular platform and application

Edgar Gabriel

Determining the number of

aggregators

1) Determine the minimum data size k for an individual

process which leads to maximum write bandwidth

2) Determine initial number of aggregators taking file

view and/or process topology into account.

3) Refine the number of aggregators based on the overall

amount of data written in the collective call

Edgar Gabriel

1. Determining the saturation point

• Loop of individual write operations with increasing data

size

– Avoid caching effects

– MPI_File_write() vs. POSIX write()

– Performed once, e.g. by system administrator

• Saturation point: first element which achieves (close

to) maximum bandwidth

Edgar Gabriel

2. Initial assignment of aggregators

• Based on fileview

– Only 2-D pattern handled at

this time

– 1 aggregator per row of

processes

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Group 1

Group 2

Group 3

Group 4

• Based on Cartesian process topology
– Assumption: process topology related to file access

• Based on hints
– Not implemented at this time

• Without fileview or Cartesian topology:
– Every process is an aggregator

Edgar Gabriel

3. Refinement step

• Based on actual amount of

data written across all

processes in one collective

call

• k < no. of bytes written in

group

-> split group

• k > no. of bytes written in

group

-> merge groups

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Group 1

Group 3

Group 5

Group 7

Group 2

Group 4

Group 6

Group 8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Group 1

Group 2

Edgar Gabriel

Discussion of algorithm

• Number of aggregators depends on overall data volume

being written

– Different calls to MPI_File_write_all with different

data volumes will result in different number of

aggregators used

• For fixed problem size, number of aggregators is

independent of the number of processes used

• Same approach used for two-phase I/O, dynamic

segmentation, and static segmentation

Edgar Gabriel

Some performance results

• Shark cluster at University of Houston

– PVFS2 version 2.8.2

– 22 disks on 22 nodes, 64 KB stripe size

– Gigabit Ethernet network used for I/O

– 29 compute nodes (88 cores)

• Deimos cluster at TU Dresden

– Lustre file system 1.6.7

– 11 I/O servers, 48 OSTs, 1 MB stripe size

– 4X SDR InfiniBand network used for I/O

– 724 compute nodes (> 2,500 cores)

• Implemented in OMPIO (Open MPI trunk rev. 24428)

Edgar Gabriel

Shark saturation point

Saturation point k = 32MB

Edgar Gabriel

Deimos saturation point

Saturation point k = 128MB

Edgar Gabriel

Benchmarks and test cases used

• Tile I/O

– 2-D access pattern, cartesian communicator

• BT I/O

– Application benchmark using 2-D access pattern

• Latency I/O

– Round-robin data distribution across processes

• Image processing application

– 1-D data distribution

Edgar Gabriel

Shark Tile I/O

dynamic segmentation two-phase I/O

• 81 processes test case

Edgar Gabriel

Shark BT I/O

dynamic segmentation two-phase I/O

• 36 processes test case

Edgar Gabriel

Deimos Tile I/O

dynamic segmentation two-phase I/O

• 144 processes test case

Edgar Gabriel

Deimos BT I/O

dynamic segmentation two-phase I/O

• 36 processes test case

Edgar Gabriel

Deimos BT I/O

dynamic segmentation two-phase I/O

• 144 processes test case

Edgar Gabriel

Discussion of results

• 134 tests executed in total

– 88 tests lead to best or within 10% of optimal

performance

– 110 were within 25% of best performance

• Focusing on two-phase I/O algorithm only:

– 29 out of 45 test cases outperformed one aggregator per

node strategy on average by 41%

Edgar Gabriel

Conclusions

• Good performance for many test cases

– Problems mostly by dynamic and static segmentation

– Refining step can lead to strongly uneven size of groups

• Handling multiple cycles

– np * bytes per process >> na * k

-> na = np

• Would be good to know internally what is the factor

restricting k

• Current implementation assumes uniform distribution

of data across processes

Edgar Gabriel

Future work

• Fix known issues

• Extend work to read operations as well

• Re-work refining steps for dynamic and static

segmentation algorithm

• Perform larger set of measurements

– More real-world applications

– More platforms, larger process counts etc.

